
J. Fluid Mech. (1999), vol. 387, pp. 227–254. Printed in the United Kingdom

c© 1999 Cambridge University Press

227

Natural convection flow far from
a horizontal plate
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Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural
convection on a horizontal finite plate acting as a heat dipole, are considered at
large distances from the plate. It is shown that physically acceptable self-similar
solutions of the boundary-layer equations, which include buoyancy effects, exist in
certain Prandtl-number regimes, i.e. 0.5 < Pr 6 1.470588 for plane, and Pr > 1 for
axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions
are independent of the Prandtl number and can be determined from a momentum
balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl
number and are to be determined as part of the solution of the eigenvalue problem.
For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and
1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant
jet, for which self-similar solutions of the boundary-layer equations are also provided.
Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations
for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of
the Prandtl number.

Comparisons with finite-element solutions of the full Navier–Stokes equations show
that the self-similar boundary-layer solutions are asymptotically approached as the
plate Grashof number tends to infinity, whereas the self-similar solution to the full
Navier–Stokes equations is applicable, for a given value of the Prandtl number, only
to one particular, finite value of the Grashof number.

In the Appendices second-order boundary-layer solutions are given, and uniformly
valid composite expansions are constructed; asymptotic expansions for large values of
the lateral coordinate are performed to study the decay of the self-similar boundary-
layer flows; and the stability of the jets is investigated using transient numerical
solutions of the Navier–Stokes equations.

1. Introduction
The flow generated by natural convection at large distances from a body acting as a

heat source or sink is known as a plume. Several investigations with well documented
results (Gebhart et al. 1988) have shown that the behaviour of laminar plumes at
large Grashof numbers is independent of the details of the flow near the source or
sink. It is the net amount of heat transferred to, or from, the fluid, i.e. the heat source
or sink strength, that governs the plume. For vertical plumes the buoyancy forces
act in the main flow direction, with the result of no pressure variation across the
boundary layer.

† Author to whom correspondence should be addressed.
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Figure 1. Far flow field: plane (j = 0) or axisymmetric (j = 1) flow.

The flow behaviour is quite different, however, if the body acts as a heat dipole.
Suppose the temperatures of the lower and upper surfaces of a finite horizontal plate,
as shown in figure 1, are T∞ + ∆T and T∞ − ∆T , respectively, where T∞ is the
constant ambient temperature and ∆T is a positive constant. Provided the thermal
expansivity β is positive, the flow is directed from the centre of the plate towards
the edges at both the upper and lower surfaces. Provided the symmetry of the flow
field corresponds to the symmetry of the boundary conditions (see Appendix C for a
discussion of this assumption), the amount of heat transferred from the fluid to the
plate at the upper surface is equal to the amount of heat transferred from the plate
to the fluid at the lower surface. Thus, where the surface streams merge, a horizontal
jet flow develops. This horizontal jet has an antisymmetric temperature profile, which
gives rise to rather unusual buoyancy effects that govern the far flow field.

Various similarity solutions for buoyancy-driven horizontal flow problems are
known from the literature. Stewartson (1958) and Gill, Zeh & Del Casal (1965)
provided self-similar solutions to the boundary-layer equations for indirect natural
convection flows on horizontal surfaces. Goldshtik & Shtern (1990) found self-similar
solutions to the Navier–Stokes equations for axisymmetric free convection near a
thermal quadrupole. The properties of non-buoyant plane jets, with a total flow rate
of zero, were studied by Goldshtik, Hussain & Shtern (1991).

It is the aim of the present work to investigate the flow field at large distances
from a body, in particular a horizontal plate, acting as a heat dipole as described
above. The plate length (for plane flow) or the plate diameter (for axisymmetric flow)
are denoted by L. The coordinate system X, Y is shown in figure 1, with the Y -axis
representing the plane, or axis, of symmetry. The horizontal and vertical velocity
components are denoted by U and V , respectively. Alternatively, a polar coordinate
system R, θ, see figure 1, with associated velocity components Vr , Vθ , is also used in
the course of the analysis. The Boussinesq approximation is applied, and dissipation
is neglected in the energy balance. Then the non-dimensional parameters governing
the flow are the Prandtl number Pr and the plate Grashof number Gr, i.e.

Pr =
ν

α
and Gr =

gβ∆TL3

ν2
, (1.1)
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with ν, α and β > 0 being the constant values of kinematic viscosity, thermal diffusivity
and thermal expansivity, respectively, while g denotes the gravity acceleration.

The following non-dimensional variables are introduced:

x̂ = X/L, ŷ = Y /L, r̂ = R/L, (1.2a)

û = U/Uref, v̂ = V/Uref, v̂r = Vr/Uref, v̂θ = Vθ/Uref, (1.2b)

Θ̂ = (T∞ − T )/∆T , p̂ = P/ρ∞U2
ref , (1.2c)

where Uref = (gβ∆TL)1/2 is a reference velocity, T and P are the absolute temperature
and the pressure, respectively, and ρ∞ is the constant ambient density. Thus the non-
dimensional basic equations for plane (j = 0) or axisymmetric (j = 1) flow are the
continuity equation

∂(ûx̂j)

∂x̂
+
∂(v̂x̂j)

∂ŷ
= 0, (1.3a)

the Navier–Stokes equations

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+ Gr−1/2

[
∂2û

∂x̂2
+

(
1

x̂

∂û

∂x̂

)j
−
(
û

x̂2

)j
+
∂2û

∂ŷ2

]
, (1.3b)

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= −∂p̂

∂ŷ
+ Gr−1/2

[
∂2v̂

∂x̂2
+

(
1

x̂

∂v̂

∂x̂

)j
+
∂2v̂

∂ŷ2

]
− Θ̂, (1.3c)

and the energy equation

û
∂Θ̂

∂x̂
+ v̂

∂Θ̂

∂ŷ
=

Gr−1/2

Pr

[
∂2Θ̂

∂x̂2
+

(
1

x̂

∂Θ̂

∂x̂

)j

+
∂2Θ̂

∂ŷ2

]
. (1.3d)

It is to be expected that, under certain conditions, the flow field possesses properties
of self-similarity. Thus, in §§ 2 and 3, we seek self-similar solutions to the boundary-
layer equations, both with and without buoyancy effects, depending on the value of
the Prandtl number. In § 4 a particular, self-similar solution to the full equations of
motion will be given. Finally a comparison of numerical and analytical solutions (§ 5)
will not only lend support to the results but also provide further insight into the
characteristics of the far flow field. Further, and more detailed, results can be found
in Noshadi (1996).

2. Horizontal buoyant jets
2.1. Boundary-layer equations and self-similarity

We consider here self-similar, buoyancy-affected far fields for large Grashof numbers.
Subject to a posteriori justification it is assumed that the flow of interest resembles
a horizontal slender jet flow, see figure 1. Thus the governing equations are the
boundary-layer equations

∂(uxj)

∂x
+
∂(vxj)

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= − ∂

∂x

∫ ∞
y

Θdy +
∂2u

∂y2
, (2.2a)
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u
∂Θ

∂x
+ v

∂Θ

∂y
=

1

Pr

∂2Θ

∂y2
, (2.2b)

v =
∂u

∂y
= Θ = 0 at y = 0, (2.3a)

u = Θ = 0 as y →∞ (2.3b)

in terms of the scaled non-dimensional variables

x = x̂, y = ŷGr1/5, (2.4a)

u = ûGr1/10, v = v̂Gr3/10, Θ = Θ̂. (2.4b)

The first term on the right-hand side of the momentum equation (2.2a) accounts for
the pressure variation due to buoyancy forces (cf. Gersten & Herwig 1992 or Gebhart
et al. 1988).

The continuity equation (2.1) is satisfied with the help of a stream function ψ, i.e.

u = x−j
∂ψ

∂y
, v = −x−j ∂ψ

∂x
. (2.5)

Defining the similarity variables η, f and ϑ according to the relationships

y = c xλ1η, ψ = c−1xλ2f(η), Θ = c−5xλ3ϑ(η), (2.6)

where c is an arbitrary free constant, and introducing the dummy variable q(η) =∫ η
∞ ϑ dη, transforms the basic equations (2.1) and (2.2a, b) into the following set of

ordinary differential equations:

q′ − ϑ = 0, (2.7a)

f′′′ + λ2ff
′′ − (1− 2λ1)f

′2 − λ1ηϑ+ 2(1− 2λ1)q = 0, (2.7b)

ϑ′′ + Pr
(
λ2fϑ

′ − λ3f
′ϑ
)

= 0, (2.7c)

provided the exponents λ1, λ2 and λ3 satisfy the relationships

λ2 = (1 + j)− λ1, λ3 = 2− 5λ1. (2.8)

Since (2.6) contains the free constant c, the value of f′(0) can be normalized to 1
without loss of generality. Herewith the boundary conditions become

f = f′ − 1 = f′′ = ϑ = 0 at η = 0, (2.9a)

q = f′ = ϑ = 0 as η →∞. (2.9b)

2.2. Integral conservation laws

Integrating the momentum equation (2.7b) from zero to infinity and making use of
the boundary conditions (2.9a, b) gives

(2 + j − 3λ1)

∫ ∞
0

f′2dη + (2− 3λ1)

∫ ∞
0

ηϑ dη = 0. (2.10)

Since f′2 > 0 and ϑ > 0, both integrals in (2.10) are positive. In the plane flow case,
i.e. j = 0, the coefficients of both integrals are equal to (2− 3λ1), with the result that
the exponent λ1 must have the constant value

λ1 = 2
3

(for j = 0). (2.11)
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This is the same value as for the classical plane jet. Thus the momentum flow is
conserved, i.e.

d

dx

∫ ∞
0

u2dy = 0 (for j = 0). (2.12)

Since, in the case of plane flow, λ1 is determined solely from similarity requirements
and integral conservation considerations, the corresponding solution is a self-similar
solution of the first kind according to Barenblatt (1979).

In the axisymmetric flow case, however, equation (2.10) requires that the coefficients
of the integrals have different signs. To satisfy this condition it is not necessary that
λ1 has a definite value. It is sufficient that λ1 is in the interval

2
3
< λ1 < 1 (for j = 1) . (2.13)

Thus, in the axisymmetric flow case, λ1 is an eigenvalue that is to be determined from
solving the set of equations (2.7a–c), (2.8) and (2.9a, b) with Pr as a parameter. In
the notation of Barenblatt (1979), this results in a self-similar solution of the second
kind.

2.3. Solutions for plane flow

It is possible to integrate the momentum equation (2.7b) with λ1 = 2
3

once, reducing
the original set of equations (2.7a–c) to

q′ − ϑ = 0, (2.14a)

3f′′ + ff′ − 2ηq = 0, (2.14b)

3

Pr
ϑ′′ + fϑ′ + 4f′ϑ = 0, (2.14c)

with the boundary conditions

f = f′ − 1 = ϑ = 0 at η = 0; (2.15a)

q = f′ = 0 as η →∞. (2.15b)

The set of nonlinear ordinary differential equations was solved numerically with a
B-spline collocation method at Gaussian points (Ascher, Christiansen & Russel 1981).
There were three collocation points at each interval, and the boundary values were
prescribed at both ends.

A solution was found for any Prandtl number, figures 2 to 4, with a singularity
at Pr = Pr∗ = 1.470588 = 25/17. Note that there are reversed flow regions due to
buoyancy effects (figure 2).

As Pr approaches the critical value Pr∗, f(∞) vanishes, see figure 4, indicating that
entrainment into the jet becomes zero. As a consequence, the decay of both velocity
and temperature disturbances as η → ∞ is algebraic for Pr = Pr∗, while it is of the
common exponential type if Pr 6= Pr∗, see Appendix B. This behaviour resembles
the limit solutions of the boundary-layer equations as investigated by Brown &
Stewartson (1965).

For Pr > Pr∗ the entrainment is again positive, but the temperature disturbance
profiles, as shown in figure 3, contain regions of negative values, which implies that the
mathematical solution for Pr > Pr∗ is unlikely to describe a real natural convection
flow in an infinite domain.

As Pr → 1
2
, the reversed flow region and the temperature disturbance vanish such

that at Pr = 1
2

the solution is identical to the solution of the classical isothermal



232 V. Noshadi and W. Schneider

1.0

0.8

0.6

0.4

0.2

0

–0.2

0 5 10 15 20 25
η

f ′

Pr = 0.2
2
4
6

10
50

1.0

0.8

0.6

0.4

0.2

0

–0.2
0 5 10 15 20

f ′

Pr = 0.51
0.7
1.0
1.2
1.4

1.470588

Figure 2. Self-similar profiles of the horizontal velocity component in plane buoyant jet flow.

(i.e. non-buoyant) plane jet flow. For Pr < 1
2

the sign of the temperature disturbance
is reversed, see figure 4, which indicates that this mathematical solution does not
correspond to the real flow about a horizontal plate as investigated in this work.
Rather it is likely, and will be confirmed below, that the far field remains non-
buoyant when the Prandtl number drops below the value 1

2
. Thus, the physically

acceptable solution is restricted to the Prandtl-number regime 1
2
< Pr 6 Pr∗.

2.4. Solutions of the eigenvalue problem for axisymmetric flow

For axisymmetric flow (j = 1), the set of ordinary differential equations (2.7a–c) was
solved numerically subject to the boundary conditions (2.9a, b). As a result, velocity
profiles as shown in figure 5 were obtained. In contrast to plane flow, the solution for
axisymmetric flow does not show a reversed flow region. Self-similar solutions exist
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Figure 3. Self-similar temperature profiles in plane buoyant jet flow.

for Pr > 0.43446, with λ1 = λ1(Pr) as given in figure 6. The temperature disturbances
vanish as Pr→ 1, i.e. the solution reduces to the classical solution of the isothermal,
non-buoyant axisymmetric (‘radial’) jet. For Pr < 1 the sign of the temperature
disturbance is reversed, figure 7, indicating as before in the plane case that the
mathematical solution does not correspond to the problem under investigation in this
work, see §§ 3 and 5. A solution for Pr < 0.43446 has not been found.

For large Prandtl numbers, the viscous boundary layer is much thicker than the
thermal boundary layer. Thus the flow field consists of two layers, an inner buoyant
layer which drives the flow, and an outer shear layer, see figure 8, Pr = 50 and 500.

2.5. Outer flows induced by horizontal buoyant jets

The irrotational flow driven by entrainment into the slender jet is described in terms
of polar coordinates r = r̂, θ. The stream function of the outer flow, ψo, is referred to
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Figure 4. f(∞) (i.e. non-dimensional entrainment rate) and ϑ′(0) (i.e. non-dimensional heat flux
across the plane y = 0) for plane buoyant jet flow. Dashed lines: solutions with reversed temperature
disturbances.

L1+j(gβ∆TL)1/2Gr−3/10. Matching with the inner (jet) flow according to (2.6) requires

ψo = c−1rλ2fo(θ) (2.16)

with fo(π/2) = f(∞), while fo(0) = 0 for reasons of symmetry. Note that λ2 = 1
3

for
plane flow and λ2 = 2−λ1 for axisymmetric flow. Introducing (2.16) into the equation
of irrotationality and satisfying the boundary conditions for fo gives

fo = f(∞)
sin
(
θ/3
)

sin
(
π/6
) (for plane flow), (2.17)

where f(∞) can be taken from figure 4. Apart from the value of the constant f(∞),
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Figure 6. The eigenvalue λ1 as a function of Pr for axisymmetric flow. Dashed line: solutions with
reversed temperature disturbances.

(2.17) is in agreement with the classical result for plane laminar jets issuing from a wall
(Rubin & Falco 1968; see also Mitsotakis, Schneider & Zauner 1984 for a more precise
interpretation). For axisymmetric flow the equation of irrotationality reduces to

(1− χ2)
d2fo

dχ2
+ λ2(λ2 − 1)fo = 0, (2.18)

with χ = cos θ and boundary conditions as before in the case of plane flow. The
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Figure 8. Non-dimensional shear stress f′′(η) for axisymmetric (radial) buoyant jet flow.

solution can be expressed in terms of hypergeometric series (Noshadi 1996), but it
appears simpler to solve (2.18) numerically. Results are given in figure 9.

Since heat conduction is negligible outside the boundary-layer region, the induced
irrotational flow has the constant temperature of the ambient fluid.

3. Non-buoyant jets
It was shown in the previous section that the buoyancy effects vanish as Pr → 1

2
(for plane flow) or Pr→ 1 (for axisymmetric flow). This suggests (and the comparison
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Figure 9. Non-dimensional stream function of the inviscid axisymmetric outer flow induced by a
horizontal buoyant jet.

with the numerical results to be presented in § 5 will confirm) that the far field is
non-buoyant for Prandtl numbers below 1

2
(plane flow) and 1 (axisymmetric flow),

respectively. These cases are now considered.
When the buoyancy term (second term) is dropped in the overall momentum

balance (2.10), it follows that

λ1 =
2 + j

3
. (3.1)

Omitting the buoyancy terms also in the momentum equation (2.7b) reduces it
such that it can be integrated three times to obtain the result (Schlichting 1979;
Rajaratnam 1976; Schetz 1993; Schlichting & Gersten 1997)

f = tanh η̃ , η̃ =
1 + 2j

6
η. (3.2)

Since the equations of momentum and energy are decoupled when buoyancy is
neglected, equation (2.8) ceases to be valid for λ3. Rather λ3 is an eigenvalue to be
determined from solving the energy equation (2.7c) subject to the boundary conditions
(2.9a, b). The solution can be expressed in terms of associated Legendre functions,
and the eigenvalue is found to be

λ3 = −1 + 2j

3

(
2 +

1

Pr

)
(3.3)

(Noshadi 1996). However, rather than evaluating the Legendre functions it appears
preferable to solve the ordinary differential equation (2.7c) numerically, making use of
the known eigenvalue according to (3.3). Some results will be given in § 5, figures 16
and 19.
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4. A self-similar solution of the Navier–Stokes equations
Goldshtik & Shtern (1990) found self-similar solutions to the full Navier–Stokes

equations for the axisymmetric natural convection flow originating from a thermal
quadrupole. In this section it will be shown that a self-similar solution, with the
velocity varying as 1/r, exists also if the flow is due to a thermal dipole.

It is possible to eliminate the Grashof number from the set of basic equations
(1.3), written in spherical polar coordinates, by defining the following scaled non-
dimensional variables:

r = r̂, v̌r = v̂rGr1/2, v̌θ = v̂θGr1/2, Θ̌ = Θ̂Gr . (4.1)

Then the continuity equation is satisfied by introducing a stream function ψ̌ according
to

v̌r = − 1

r2 sin θ

∂ψ̌

∂θ
, v̌θ =

1

r sin θ

∂ψ̌

∂r
, (4.2)

and the remaining equations are reduced to ordinary differential equations by means
of the substitution

ψ̌ = rf̌(χ), Θ̌ = r−3ϑ̌(χ), with χ = cos θ. (4.3)

Integrating the momentum equation three times, defining a function Q as

Q =

∫ χ

1

∫ χ

1

ϑ̌ dχ dχ, (4.4)

and making use of the boundary condition f̌(1) = 0, one eventually obtains

(1− χ2)f̌′ + 1
2
f̌2 + 2χf̌ − Qχ− C(1− χ)2 = 0, (4.5a)

(1− χ2)ϑ̌′′ + Pr (f̌ϑ̌′ + 3f̌′ϑ̌)− 2χϑ̌′ + 6ϑ̌ = 0. (4.5b)

C is a constant of integration that will be determined as a part of the solution. The
appropriate boundary conditions are

f̌ = ϑ̌ = Q− 2C = 0 at χ = 0, (4.6a)

Q = Q′ = 0 and ϑ̌′ = finite as χ→ 1, (4.6b)

where Q(0) = 2C follows from f̌′′(0) = 0, expressing symmetry of the radial velocity
profile with respect to the horizontal plane, while Q(1) = Q′(1) = 0 follows from the

definition (4.4). Also, ϑ̌′(1) must be finite to ensure zero heat flux, i.e. ϑ̌′ sin θ = 0, at
the axis of symmetry. Numerical solutions for various values of the Prandtl number
are given in figure 10.

In the case considered by Goldshtik & Shtern (1990) there is the freedom to choose
the value of the temperature disturbance at one boundary, which can be interpreted
in terms of different Grashof numbers. In spite of the fact that the set of equations
(4.5a, b) is identical to that solved by Goldshtik & Shtern (1990), there is no free
constant in the present problem owing to the different boundary conditions. Therefore
the present self-similar solution describes the far field of the natural convection flow
due to a heat dipole only for one particular value of the Grashof number. This
particular value of the Grashof number depends on the near flow field details. In
§5.2 the particular values of Grashof number will be determined by comparing the
self-similar far-field solutions with the finite-element solutions of the complete flow
field.
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Figure 10. (a) Radial velocity and (b) temperature profiles according to the similarity solution of
the Navier–Stokes equations for axisymmetric flow.

5. Comparison with numerical solutions of the Navier–Stokes equations
5.1. Computational procedure

The Fluid Dynamics Analysis Package FIDAP, version 6.0 (FIDAP 1991) is applied
to compute the far flow field numerically. Thereby, the set of basic equations (1.3)
is solved with the method of finite elements, using quadrilateral elements with 9
nodes. To reduce the required memory size and the computation time, the pressure is
eliminated from the discretized set of equations using the penalty function approach.
If required, the pressure can then be recovered from post-processing the velocity
field. Both the velocity and the temperature are approximated using biquadratic
interpolation functions.
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Figure 11. Computational domain and boundary conditions.

For the purpose of comparison, the symmetry of the numerically computed flow
is assumed to be the same as for the self-similar solutions. Thus the computational
domain is restricted to the first quarter of the geometric space as shown in figure 11.
(Deviations from this symmetry will be considered in Appendix C.) The distance
of the outflow boundary from the origin is chosen such that Gr x̂ = Gr x̂3 > 1011,
while the distance of the upper boundary from the origin is made at least three
times the thickness of the boundary layer. The boundary conditions are given in
figure 11. The commonly used ‘traction-free condition’ for the outflow boundary
requires both components of the total stress vector to be zero. Since the contribution
of the viscous term to the normal stress is rather small, the pressure is forced to
be close to zero. This is in conflict, however, with the hydrostatic pressure gradient
that remains of importance as the outflow boundary is approached. Therefore, and
according to some test computations with various boundary conditions, FIDAP’s
special ‘outflow’ boundary condition (FIDAP 1991) seems to be preferable in this
case, as it eliminates the pressure by including the integral of the pressure over the
outflow boundary as part of the right-hand-side vector of the system of equations.
This integral is updated at each iteration until convergence is attained, i.e. the default
criteria for residues and relative errors are met.

5.2. Discussion of results

To give an idea of the complete flow field, a streamline plot of plane flow is shown in
figure 12. There is a striking resemblance to the classical plane jet flow in the presence
of a wall (or symmetry plane) perpendicular to the jet axis (cf. Mitsotakis et al. 1984).

An overall momentum balance for the half-space x̂ > 0 shows that the momentum
flow in the far-field jet must be balanced by the hydrostatic pressure distribution in
the plane of symmetry near the plate. Thus it is to be expected that bodies with
different geometries or sizes, acting as heat dipoles with the same heat flow rate, will
generate different far fields. This view is confirmed by the numerical results given in
figure 13.
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Figure 12. Streamlines, plane flow, Gr = 48 000, Pr = 1: , numerical (FIDAP);

, composite expansion ψ(2,1)
+ , see Appendix A.
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Figure 13. Flow velocity in the horizontal plane ŷ = 0 for various types of heat dipoles with
the same heat flow rate (plane flow): , horizontal circular cylinder with diameter L and
Gr = 23 650; , horizontal plate with length L and Gr = 48 000; , horizontal plate with
length 1.6L and Gr = 38 950; , vertical plate with length L and Gr = 28 000.

There is, however, the question of whether buoyancy effects remain of importance
as both the velocity and temperature disturbances decay at infinity. Thus we consider
values of the local Grashof number

Gr local = Gr Θ̂max x̂
3, (5.1)

where Θ̂max is the maximum of the temperature disturbance at a fixed value of x̂.
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Figure 14. Local Grashof number Grlocal for large values of the plate Grashof number Gr
(axisymmetric flow).

Pr 0.2 0.5 0.7 1.0 1.47 2.0
c (plane flow) 0.79 1.04 1.15 1.28 1.43 —
c (axisymmetric flow) 1.32 1.47 1.94

Table 1. Values of the constant c for a horizontal plate of length or diameter L.

Figure 14 gives results for the more interesting case of axisymmetric flow. (For plane
flow see Noshadi 1996.) While for Pr = 2 the local Grashof number remains large
provided the plate Grashof number Gr is large, the local Grashof number decays
rapidly for Pr = 0.5. This is in accord with the self-similar flows with, and without,
buoyancy effects as analysed in §§ 2 and 3, respectively.

To compare the results obtained by various methods, the free constant c in (2.6)
is chosen such that at one particular section, i.e. x̂ constant, the maximum of the
horizontal velocity profile in the jet according to the finite-element solution of the
Navier–Stokes equations is equal to that of the self-similar solution of the boundary-
layer equations. Then the same scaling is used for comparing temperature profiles,
velocity profiles, streamlines etc. at any other section. Some values of the constant c
are given in table 1.

5.3. Comparison of results for plane flow

In the range 0.5 < Pr 6 1.470588, the self-similar velocity and temperature profiles
of the horizontal buoyant jets are in general agreement with the finite-element
solutions of the Navier–Stokes equations, see figure 15. There is, however, some small
local disagreement as the finite-element solution predicts a reversed flow region that
becomes smaller with increasing distance from the plate. This slight discrepancy seems
to be due to the inadequacy of FIDAP’s outflow boundary condition in predicting
the reversed flow at the right-hand boundary of the computational domain, while,
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Figure 15. Comparison of the self-similar boundary-layer solution for plane, horizontal, buoyant
jet flow with the finite-element (FIDAP) solution of the Navier–Stokes equations. (a) Profiles of
horizontal velocity component; (b) temperature profiles.

on the other hand, the analysis of the horizontal buoyant jet is confirmed by a
second-order boundary-layer solution (Appendix A, figure 22).

For Prandtl numbers equal to or smaller than 1
2
, the buoyancy effects decay so

rapidly with increasing distance from the plate that the far flow field becomes a
non-buoyant horizontal jet. Figure 16 shows that the self-similar horizontal velocity
and temperature profiles according to the boundary-layer solution of horizontal non-
buoyant jets are very close to the corresponding profiles obtained by the finite-element
solution of the Navier–Stokes equations.

For Prandtl numbers larger than the critical value 1.470588, finite-element solutions
do not show a self-similar structure.
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Figure 16. As figure 15 but for non-buoyant jet flow.

5.4. Comparison of results for axisymmetric flow

From plots similar to figure 13 it is possible to determine the rate of decay of the
velocity in the plane of the horizontal plate at large distances from the plate centre.
The results are summarized in figure 17. For very large plate Grashof numbers
the numerical (FIDAP) results approach the boundary-layer limit, with the limiting
eigenvalues depending on the Prandtl number in agreement with the analysis given
in §§ 2 and 3. Regarding velocity and temperature profiles, the numerical results given
in figures 18 and 19 are in accord with the self-similar boundary-layer solutions for
buoyant (Pr > 1) and non-buoyant (Pr < 1) jets, respectively, provided the plate
Grashof number is very large.

For particular, moderately large values of the Grashof number, on the other hand,
figure 17 indicates that there are solutions with a velocity decay rate 1 − 2λ1 = −1,
which corresponds to the self-similar solution of the Navier–Stokes equations as
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Figure 17. Rate of decay of the radial velocity component in the plane of the horizontal plate
at large distances from the plate centre: finite-element (FIDAP) solutions of the Navier–Stokes
equations compared to limiting values according to boundary-layer theory (axisymmetric flow).

discussed in § 4. These particular values of the Grashof number depend on the
Prandtl number (see table 2) and on near-field details, especially the shape of the
body acting as the heat dipole. To confirm the applicability of the self-similar solution
of the Navier–Stokes equations, comparisons with finite-element solutions were made.
A result is given in figure 20.

6. Conclusions
Analytical and numerical solutions have been obtained for natural convection flows

at large distances from a body (in particular a finite horizontal plate) acting as a heat
dipole, i.e. supplying and withdrawing, respectively, the same amount of heat at the
lower and upper surfaces. The results lead to the following conclusions.

The far field depends on details of the flow near the heat dipole, i.e. two different
bodies acting as heat dipoles with the same amount of heat flow rate generate different
far fields.

For very large values of the Grashof number Gr, the far field resembles a
horizontal jet flow.

If the Prandtl number Pr is equal to, or smaller than, 1
2

and 1, respectively, for
plane and axisymmetric flow, buoyancy forces are negligible in the horizontal jet at
large distances from the body (‘non-buoyant jet flow’).

In certain Prandtl-number regimes, i.e. 1
2
< Pr 6 Pr∗ = 1.470588 for plane and

Pr > 1 for axisymmetric flow, there is a horizontal buoyant jet flow that can be
described by self-similar boundary-layer solutions.

In the plane flow case, the eigenvalues of the self-similar solutions are universal
constants that can be obtained from an overall momentum balance, whereas in the
axisymmetric case the eigenvalues depend on Pr and have to be determined as part
of the solution.
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Figure 18. Comparison of the self-similar boundary-layer solution for axisymmetric, horizontal,
buoyant jet flow with the finite-element (FIDAP) solution of the Navier–Stokes equations. (a)
Profiles of horizontal velocity component; (b) temperature profiles.

For a given Prandtl number Pr there is a particular value of the Grashof number
Gr such that the axisymmetric far field is properly described by a self-similar solution
of the Navier–Stokes equations, with the velocity varying as the inverse of the distance
from the body (plate) centre.
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Figure 19. As figure 18 but for non-buoyant jet flow.

Pr 0.3 0.5 1.0 2.0 3.0 7.0
Gr 170 360 360 350 220 110

Table 2. Values of Gr, for which the self-similar solution of the Navier–Stokes equations describes
the far field of the natural convection flow due to a horizontal circular plate acting as a heat dipole.

Appendix A. Second-order boundary-layer solutions and uniformly
valid solutions for plane flow

To derive the second-order boundary-layer equations for plane flow, the continuity
equation, the Navier–Stokes equations and the energy equation are written in Carte-
sian coordinates using the non-dimensionalization (2.4a, b). By introducing the stream
function ψ according to (2.5) and eliminating the pressure from the Navier–Stokes
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Figure 20. Comparison of the self-similar solution with the finite-element (FIDAP) solution of the
Navier–Stokes equations for axisymmetric flow. (a) Radial velocity component; (b) temperature.

equations by differentiating, the set of basic equations transforms to

ψyψyyx − ψxψyyy + Gr−2/5(ψyψxxx − ψxψyxx)
= ψyyyy + Gr−4/5ψxxxx + 2Gr−2/5ψyyxx +Θx, (A 1a)

ψyΘx − ψxΘy =
1

Pr
(Gr−2/5Θxx +Θyy). (A 1b)

For Gr � 1, the inner expansions are

ψ = ψi = ψ1 + Gr−1/5ψ2 + · · · , (A 2a)

Θ = Θi = Θ1 + Gr−1/5Θ2 + · · · . (A 2b)
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The first-order inner expansion has already been considered in § 2, with ψ and Θ
representing ψ1 and Θ1, respectively, in the present notation. By keeping only the
second-order terms, the following set of second-order boundary-layer equations is
obtained:

ψ1yψ2yyx − ψ1xψ2yyy + ψ1yyxψ2y − ψ1yyyψ2x = ψ2yyyy +Θ2x, (A 3a)

ψ1yΘ2x − ψ1xΘ2y +Θ1xψ2y −Θ1yψ2x =
1

Pr
Θ2yy. (A 3b)

Introducing f2 and ϑ2 with

ψ2 = xλif2(η), Θ2 = c−4xλi−5/3ϑ2(η) (λi = const), (A 4)

where c is the same constant as in (2.6), substituting into (A 3a, b) and integrating
once, the boundary-layer equations are reduced to the following set of ordinary
differential equations:

3f′′′2 + ff′′2 + 3f′f′2 = 3q2 + 2ηϑ2, (A 5a)

3

Pr
ϑ′′2 + fϑ′2 + 5f′ϑ2 = −4ϑf′2, (A 5b)

where q2 is defined as

q2 =

∫ η

∞
ϑ2dη. (A 6)

The two-term inner expansion (A 2a) is required to match the one-term outer ex-
pansion, which is available from (2.16) and (2.17). Applying Van Dyke’s matching
principle (Van Dyke 1975) gives

λi = 0 (A 7)

and

f2(η)|η→∞ = − 1
3
f(∞) cot

(
1
6
π
)
η (A 8)

or, in a more convenient form,

f′2(∞) = − 1
3
f(∞) cot

(
1
6
π
)
, (A 9)

where f(∞) can be taken from figure 4. With the matching condition (A 9) supple-
mented by the boundary conditions

f2 = f′′2 = ϑ2 = 0 at η = 0, (A 10a)

ϑ2 = 0 as η →∞, (A 10b)

equations (A 5a, b) and (A 6) were solved numerically. The solution for Pr = 1 is
shown in figure 21.

To obtain uniformly valid solutions, two different rules of composition are available
(Van Dyke 1975). Whether the additive or the multiplicative composition is preferable
depends, in the present problem, on the number of terms to be included. Based on
first-order inner and outer expansions, the multiplicative composition ψ

(1,1)
× appears

preferable, as the additive composition fails to satisfy exactly the symmetry condition
at the Y -axis. However, when the second-order terms of the inner expansion are
taken into account, the multiplicative composition breaks down as the common
part of the inner and outer expansions vanishes for certain values of the spatial
coordinates (Schneider 1973, 1978). Thus, the additive rule is applied in the latter case
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Figure 21. Second-order horizontal velocity and temperature profiles for plane buoyant jet flow.
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Figure 22. Profiles of the horizontal velocity component according to the composite expansions u(1,1)
×

and u(2,1)
+ in comparison to the finite-element (FIDAP) solution. Plane flow, Gr = 48 000, Pr = 1.

to obtain ψ
(2,1)
+ , see figure 12. Uniformly valid solutions for the horizontal velocity

components, u(1,1)
× and u(2,1)

+ , are derived from the stream-function solutions, ψ(1,1)
× and

ψ
(2,1)
+ , respectively. A comparison with the numerical solution of the Navier–Stokes

equations is given in figure 22.
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Appendix B. Asymptotic behaviour of horizontal buoyant jets
To analyse the singularity at the critical Prandtl number, Pr∗ = 1.470588, in the

plane flow case, asymptotic expansions are performed for η → ∞. If Pr 6= Pr∗, i.e.
f(∞) = f∞ = const 6= 0, the asymptotic expansions

q = C1 exp
(− 1

3
Prf∞η

)
+ · · · , (B 1a)

f′ = exp
(− 1

3
f∞η

) {
2
3
C1

(
1
3
f∞(1− Pr)

)−2[
1− (1− 1

3
f∞(1− Pr)η

)
exp

(
1
3
f∞(1− Pr)η

)]
+ C2

}
+ · · · (B 1b)

satisfy (2.14a–c) and the boundary conditions (2.15a, b). The decaying behaviour of
f′ as η →∞ is as follows:

Pr < 1 and Pr 6= 1
2

: f′ ∼ η exp
(− 1

3
Prf∞η

)
, (B 2a)

1 < Pr and Pr 6= Pr∗ : f′ ∼ exp
(− 1

3
f∞η

)
, (B 2b)

Pr = 1
2

: f′ ∼ exp
(− 1

3
f∞η

)
, (B 2c)

Pr = 1 : f′ ∼ η2 exp
(− 1

3
f∞η

)
. (B 2d)

The exponential decay, however, changes to an algebraic one when the critical value of
the Prandtl number, Pr = Pr∗, is approached. Introducing the asymptotic expansions

f ∼ F1η
−γ + · · · , q ∼ Q1η

−δ + · · · (B 3a,b)

into (2.14a–c) and making use of the boundary conditions (2.15a, b), the coefficients
and exponents of the first-order terms are determined as

F1 =
10

Pr
, γ = 1, (B 4a)

Q1 = −10

Pr

(
5

Pr
− 3

)
, δ = 4. (B 4b)

Appendix C. Numerical investigations of symmetry and stability
To verify the assumption of symmetry of the flow field with respect to the X-axis

and to study the stability of the jets, both steady-state and transient computations
were performed for the half-space, i.e. covering the positive part of the X-axis and
the whole Y -axis. FIDAP’s version 7.6 with 4-node quadrilateral elements was used.
For the boundary conditions see figure 11, with the symmetry condition at the X-axis
omitted, of course. Furthermore, the outflow boundary condition was replaced by
the conventional traction-free condition as it turned out that using the outflow
boundary condition for transient computations can lead to unrealistic recirculatory
flow regions that grow indefinitely with increasing time.

Provided the net amount of heat transferred from the plate to the surrounding fluid
is zero, the laminar steady-state computations for plane flow produce a numerically
stable solution with some small deviations of the jet axis from the horizontal, see
figure 23. If, however, the heat flow at the upper surface is reduced slightly, e.g.
by 0.02%, the jet bends upward as shown in figure 24. For somewhat larger, yet
still small, differences (e.g. 0.03%) in the heat supplied at the upper and lower
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Figure 23. Streamline contour plots from steady-state computations for plane flow.
Pr = 1, Gr = 105, zero net heat supply.
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Figure 24. Streamline contour plots from steady-state computations for plane flow, Pr = 1,
Gr = 105. The prescribed heat flow at the upper side of the plate is 0.02% smaller than that at the
lower side.

surfaces, respectively, the flow structure changes to such an extent that the present
computations become obsolete.

To study the stability of the plane buoyant jets, transient computations were
performed for Pr = 1 and various values of the plate Grashof number. Each transient
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Figure 25. Streamline contour plots from transient computations for plane flow, Pr = 1, Gr = 105.
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Figure 26. Position of, and local Reynolds number at, the critical cross-section, where the
instabilities originate, as a function of the plate Grashof number. Plane flow, Pr = 1.
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computation starts with the result of the corresponding steady-state computation as
initial solution. After some time, instabilities appear at a certain distance from the
plate. With increasing time, the instabilities grow and propagate in the downstream
direction, see figure 25. Here the dimensionless time is defined as

t̂ = t

(
gβ∆T

L

)1/2

. (C 1)

With increasing plate Grashof number, the critical distance x̂critical , where the in-
stabilities originate, decrease as shown in figure 26. However, the local Reynolds
number,

Re = ûmax ŷmax/2 Gr1/2, (C 2)

at the critical section is nearly independent of Gr and approximately equal to 40, see
also figure 26. Here ûmax is the maximum value of the axial velocity component at
the cross-section, and ŷmax/2 is the value of the lateral coordinate where û = 1

2
ûmax.
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